High frequency reporting of energy utilization data in smart grid can leads to leaking sensitive information regarding end users life style. We propose A Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (DPNCT) to protect the privacy of the smart grid data using noise cancellation protocol with a master smart meter to provide accurate billing and load monitoring. Next, we evaluate the performance of DPNCT under various privacy attacks such as filtering attack, negative noise cancellation attack and collusion attack. The DPNCT model relies on trusted master smart meters and is vulnerable to collusion attack where adversary collude with malicious smart meters in order to get private information of other smart meters. In this paper, we propose an Enhanced DPNCT (E-DPNCT) where we use multiple master smart meters for split noise at each instant in time t for better protection against collusion attack. We did extensive comparison of our E-DPNCT model with state of the art attack resistant privacy preserving models such as EPIC for collision attack and with Barbosa Differentialy Private (BDP) model for filtering attack. We evaluate our E-DPNCT model with real time data which shows significant improvement in privacy attack scenarios without any compute intensive operations.
翻译:智能电网中的高频能源利用数据报告可能导致有关终端用户生活风格的敏感信息泄漏。 我们提出智能米人装入监控和计费的不同私隐噪音取消模式(DPNCT), 使用使用智能计量仪的取消噪音协议保护智能电网数据的隐私, 使用智能计量仪提供准确的计费和负负载监测。 其次, 我们评估了DPNCT在各种隐私攻击(如过滤攻击、负面取消噪音袭击和串通袭击)下的表现。 DPNCT模型依赖于可信赖的智能主仪, 并且很容易在敌人与恶意智能仪串通以获取其他智能仪的私密信息的情况下受到串通攻击。 我们在此文件中建议使用强化的DPNCT(E- DPNCT) 模式(E- DPNCT) 来保护智能网的隐私, 以更好地防止串通袭击。 我们广泛比较了我们的E- DPNCT模型与电阻隐私保护模型(如碰撞攻击的EPIC) 和用于过滤攻击的Barbosa Dardialy 私人模型(BDP) 模型。我们用实时模型来评估我们的EDPNCT模型, 并没有任何性模型, 显示任何强度攻击的快速攻击的快速性改进。