Text actionability detection is the problem of classifying user authored natural language text, according to whether it can be acted upon by a responding agent. In this paper, we propose a supervised learning framework for domain-aware, large-scale actionability classification of social media messages. We derive lexicons, perform an in-depth analysis for over 25 text based features, and explore strategies to handle domains that have limited training data. We apply these methods to over 46 million messages spanning 75 companies and 35 languages, from both Facebook and Twitter. The models achieve an aggregate population-weighted F measure of 0.78 and accuracy of 0.74, with values of over 0.9 in some cases.
翻译:文本可操作性检测是将用户编写的自然语言文本分类的问题,根据是否可由一个响应机构采取行动。在本文中,我们建议为社会媒体信息进行域觉、大规模可操作性分类建立一个监督的学习框架。我们从字典中获取25种以上的文本特征,进行深入分析,并探索处理培训数据有限的领域的战略。我们将这些方法应用于Facebook和Twitter上75个公司和35种语言的4 600多万条信息。这些模型实现了人口加权总计量法0.78和准确度0.74,在某些情况下值超过0.9。