In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
翻译:在卢旺达基加利,摩托车出租车是主要交通方式,其行驶轨迹难以预测且常无视交通规则,这给自动驾驶系统带来了重大挑战。本研究使用在基加利采集的198张图像构成的自定义数据集,对比了YOLOv5、Faster R-CNN、SSD和RetinaNet四种目标检测模型在摩托车检测任务中的表现。基于PyTorch框架并采用迁移学习进行实现,我们从检测精度、定位能力和推理速度三方面评估了这些模型在资源受限环境下实时导航的适用性。我们指出了包括数据集局限性和模型复杂性在内的实施挑战,并为未来研究推荐简化架构,以提升卢旺达等发展中国家自动驾驶系统的可及性。