High-dimensional functional time series offers a powerful framework for extending functional time series analysis to settings with multiple simultaneous dimensions, capturing both temporal dynamics and cross-sectional dependencies. We propose a novel, interpretable additive model tailored for such data, designed to deliver both high predictive accuracy and clear interpretability. The model features bivariate coefficient surfaces to represent relationships across panel dimensions, with sparsity introduced via penalized smoothing and group bridge regression. This enables simultaneous estimation of the surfaces and identification of significant inter-dimensional effects. Through Monte Carlo simulations and an empirical application to Japanese subnational age-specific mortality rates, we demonstrate the proposed model's superior forecasting performance and interpretability compared to existing functional time series approaches.
翻译:高维函数时间序列为函数时间序列分析提供了一个强大的框架,能够将其扩展至具有多个同步维度的场景,同时捕捉时间动态与横截面依赖性。我们提出了一种专为此类数据设计的新型可解释加性模型,旨在实现高预测精度与清晰的可解释性。该模型采用二元系数曲面来表示面板维度间的关系,并通过惩罚平滑与组桥回归引入稀疏性,从而实现对曲面的同步估计及显著跨维度效应的识别。通过蒙特卡洛模拟及对日本地方年龄别死亡率数据的实证应用,我们证明了所提模型相较于现有函数时间序列方法在预测性能与可解释性方面的优越性。