This article addresses several fundamental issues associated with the approximation theory of neural networks, including the characterization of approximation spaces, the determination of the metric entropy of these spaces, and approximation rates of neural networks. For any activation function $\sigma$, we show that the largest Banach space of functions which can be efficiently approximated by the corresponding shallow neural networks is the space whose norm is given by the gauge of the closed convex hull of the set $\{\pm\sigma(\omega\cdot x + b)\}$. We characterize this space for the ReLU$^k$ and cosine activation functions and, in particular, show that the resulting gauge space is equivalent to the spectral Barron space if $\sigma=\cos$ and is equivalent to the Barron space when $\sigma={\rm ReLU}$. Our main result establishes the precise asymptotics of the $L^2$-metric entropy of the unit ball of these guage spaces and, as a consequence, the optimal approximation rates for shallow ReLU$^k$ networks. The sharpest previous results hold only in the special case that $k=0$ and $d=2$, where the metric entropy has been determined up to logarithmic factors. When $k > 0$ or $d > 2$, there is a significant gap between the previous best upper and lower bounds. We close all of these gaps and determine the precise asymptotics of the metric entropy for all $k \geq 0$ and $d\geq 2$, including removing the logarithmic factors previously mentioned. Finally, we use these results to quantify how much is lost by Barron's spectral condition relative to the convex hull of $\{\pm\sigma(\omega\cdot x + b)\}$ when $\sigma={\rm ReLU}^k$.


翻译:文章涉及与神经网络近似理论相关的若干基本问题, 包括近似空间的定性, 确定这些空间的公吨值, 以及神经网络的近似率。 对于任何激活功能 $\ sgma$, 我们显示, 最大的Banach 功能空间, 可以被相应的浅神经网络有效近似, 其标准空间是由 $\ pm\ sgma (\ omega\ cdot x + b) 集的闭合锥体的测量器给予的。 我们将这个空间描述为 $ 0, 美元 和 cosine 激活功能, 特别是, 对于任何激活功能, 如果 $\ gma\ co$, 我们显示 最大Banach 功能空间相当于 光谱 Barron空间, $\ rqrqrm REU} 。 我们的主要结果显示, $ 2 美元 和 美元 美元 内端端网络的最小直径 率 和 美元 内端值 。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2020年7月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年4月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月22日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年4月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员