As a sub-branch of affective computing, impression recognition, e.g., perception of speaker characteristics such as warmth or competence, is potentially a critical part of both human-human conversations and spoken dialogue systems. Most research has studied impressions only from the behaviors expressed by the speaker or the response from the listener, yet ignored their latent connection. In this paper, we perform impression recognition using a proposed listener adaptive cross-domain architecture, which consists of a listener adaptation function to model the causality between speaker and listener behaviors and a cross-domain fusion function to strengthen their connection. The experimental evaluation on the dyadic IMPRESSION dataset verified the efficacy of our method, producing concordance correlation coefficients of 78.8% and 77.5% in the competence and warmth dimensions, outperforming previous studies. The proposed method is expected to be generalized to similar dyadic interaction scenarios.
翻译:作为情感计算的一个分部门,印象认知,例如对声音特征的感知,如温暖或能力,可能是人与人之间的谈话和口述对话系统的一个关键部分。大多数研究只研究了发言人的行为或听众的反应造成的印象,但忽视了他们的潜在联系。在本文中,我们使用一个拟议的听众适应性适应性跨场结构来进行印象认知,该结构包括听众适应功能,以模拟演讲者与听众行为之间的因果关系,以及一种跨域融合功能,以加强它们之间的联系。对三元制IMPRESSION数据集的实验性评估证实了我们的方法的有效性,产生了能力与热度方面78.8%和77.5%的一致相关系数,超过了以前的研究。预期拟议的方法将普遍适用于类似的dyadic互动情景。