In this work, we aim to clarify and reconcile metrics for evaluating privacy protection in text through a systematic survey. Although text anonymization is essential for enabling NLP research and model development in domains with sensitive data, evaluating whether anonymization methods sufficiently protect privacy remains an open challenge. In manually reviewing 47 papers that report privacy metrics, we identify and compare six distinct privacy notions, and analyze how the associated metrics capture different aspects of privacy risk. We then assess how well these notions align with legal privacy standards (HIPAA and GDPR), as well as user-centered expectations grounded in HCI studies. Our analysis offers practical guidance on navigating the landscape of privacy evaluation approaches further and highlights gaps in current practices. Ultimately, we aim to facilitate more robust, comparable, and legally aware privacy evaluations in text anonymization.
翻译:本研究旨在通过系统性综述,阐明并整合用于评估文本隐私保护的度量方法。尽管文本匿名化对于在涉及敏感数据的领域开展自然语言处理研究及模型开发至关重要,但如何评估匿名化方法是否充分保护隐私仍是一个未解决的难题。在人工审阅了47篇报告隐私度量指标的论文后,我们识别并比较了六种不同的隐私概念,分析了相关度量指标如何捕捉隐私风险的不同维度。随后,我们评估了这些概念与法律隐私标准(HIPAA和GDPR)以及基于人机交互研究的用户中心期望之间的契合程度。本分析为深入探索隐私评估方法体系提供了实用指导,并揭示了当前实践中的不足。最终,我们期望推动文本匿名化领域建立更稳健、可比较且具备法律意识的隐私评估框架。