We study the diffusion of tangential tensor-valued data on curved surfaces. For this several finite element based numerical methods are collected and used to solve a tangential surface n-tensor heat flow problem. These methods differ with respect to the surface representation used, the required geometric information and the treatment of the tangentiality condition. We highlight the importance of geometric properties and their increasing influence if the tensorial degree changes from n=0 to n>=1. A specific example is presented that illustrates how curvature drastically affects the behavior of the solution.
翻译:我们研究在曲线表面传播相近的高压数据。 为此,收集并使用若干以有限元素为基础的数字方法来解决相近表面正摄氏度热流问题。 这些方法在表层分布、所需的几何信息以及相近性条件的处理方面各不相同。 我们强调几何特性的重要性,以及如果从 n=0 到 n ⁇ 1的强度变化,它们的影响越来越大。 我们举了一个具体例子,说明曲线如何对解决方案的行为产生巨大影响。