In collaborative human-robot semantic sensing problems, e.g. for scientific exploration, robots could potentially overtrust information given by a human partner, resulting in suboptimal state estimation and poor team performance. When humans cannot be treated as oracles, robots need to update state beliefs to correctly account for possible discrepancies between human semantic observations and the actual world states which lead to those observations. This work develops strategies for rigorous online calculation of probabilistic semantic data association (PSDA) probabilities for semantic likelihoods in general settings, unlike previous work which developed naive or heuristic approximations for specific settings. The new PSDA method is incorporated into a hybrid Bayesian data fusion scheme which uses Gaussian mixture priors for object states and softmax functions for semantic human sensor observation likelihoods, and is demonstrated in Monte Carlo simulations of collaborative multi-object search missions featuring a range of relevant human sensing characteristics (e.g. false detection rate). It is shown that PSDA leads to robust estimation of observation association probabilities under a wide range of conditions whenever semantic human sensor data contain significant target reference ambiguities for autonomous object search and localization.
翻译:在人类-机器人合作的语义感测问题中,例如在科学探索方面,机器人有可能超越人类伙伴提供的信息,导致低于最理想的状态估计和团队业绩差。当人类不能被视为神器时,机器人需要更新国家信仰,以正确说明人类语义观察与导致这些观察的实际世界状态之间可能存在的差异。这项工作为严格在线计算一般环境中的语义可能性概率数据协会(PSDA)概率的战略制定了战略,不同于以前为特定环境开发天真或超常近似的工作。新的SDPA方法被纳入一种混合的Bayesian数据聚合计划,该计划使用高斯混合的先前数据作为对象,而软体轴功能用于人类感官观察的可能性。在蒙特卡洛合作性多球搜索任务模拟中展示了具有一系列相关人类感测特征(如误测率)的合作性多点搜索任务。它显示,SDSA在一系列广泛的条件下对观测关联性对象的概率进行了可靠的估计,只要地震传感器具有重大的本地模糊性,就可进行重大的搜索。