We generalize K\"ahler information manifolds of complex-valued signal processing filters by introducing weighted Hardy spaces and composite functions of smooth transformations and transfer functions. We prove that the Riemannian geometry of a linear filter induced from weighted Hardy norms for the smooth transformations of its transfer function is the K\"ahler manifold. Additionally, the K\"ahler potential of the linear system geometry corresponds to the square of the weighted Hardy norms of its composite transfer functions. By using the properties of K\"ahler manifold, geometric objects on the manifolds from arbitrary weight vectors are computed in much simpler ways. Moreover, K\"ahler information manifolds of signal filters in weighted Hardy spaces generate various well-known information manifolds by the unified framework. We also cover several examples from time series models of which metric tensor, Levi-Civita connection, and K\"ahler potentials are represented with polylogarithm of poles and zeros from the transfer functions with the weight vectors are given as a family of exponential forms.


翻译:我们通过引入加权硬度空间和平稳转换和传输功能的复合功能,将复杂价值信号处理过滤器的K\“ahler”信息元进行普及。我们证明,从加权硬度标准引出的线性过滤器的里曼尼对线性过滤器进行顺利转换功能的线性筛选是K\“ahler”的多元。此外,线性系统几何的K\“ahler”潜力与其复合传输功能加权硬度规范的正方形相对应。通过使用K\'ahler 方程式的特性,任意重量矢量的元件上的几何物体以简单得多的方式计算。此外,在加权硬度空间的信号过滤器中,K\“ahler”信息元根据统一框架生成了各种广为人知的信息元。我们还介绍了一些时间序列模型的例子,其中的指数强度、Levi-Civita连接和K\“ahler”潜力以圆杆和负重矢量矢量函数零作为指数式的组合。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年1月19日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月24日
Graph Analysis and Graph Pooling in the Spatial Domain
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年1月19日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员