This paper considers a wireless powered multiuser mobile edge computing (MEC) system, in which a multi-antenna hybrid access point (AP) wirelessly charges multiple users, and each user relies on the harvested energy to execute computation tasks. We jointly optimize the energy beamforming and remote task execution at the AP, as well as the local computing and task offloading, aiming to minimize the total system energy consumption over a finite time horizon, subject to causality constraints for both energy harvesting and task arrival at the users. In particular, we consider a practical scenario with casual task state information (TSI) and channel state information (CSI), i.e., only the current and previous TSI and CSI are available, but the future TSI and CSI can only be predicted subject to certain errors. To solve this real-time resource allocation problem, we propose an offline-optimization inspired online design approach. First, we consider the offline optimization case by assuming that the TSI and CSI are perfectly known a-priori. In this case, the energy minimization problem corresponds to a convex problem, for which the semi-closed-form optimal solution is obtained via the Lagrange duality method. Next, inspired by the optimal offline solution, we propose a sliding-window based online resource allocation design in practical cases by integrating with the sequential optimization. Finally, numerical results show that the proposed joint wireless powered MEC designs significantly improve the system's energy efficiency, as compared with the benchmark schemes that consider a sliding window of size one or without such joint optimization.


翻译:本文考虑了无线动力多用户移动边缘计算(MEC)系统(MEC),在这个系统中,多安纳混合接入点(AP)无线向多个用户收费,每个用户依靠所收获的能源执行计算任务。我们共同优化了AP的能源束形和远程任务执行,以及本地计算和任务卸载,目的是在有限的时间范围内最大限度地减少系统总能源消耗,但能源收获和任务到达用户时要受到因果关系的限制。特别是,我们考虑一种实用的设想方案,即临时任务状态信息(TSI)和频道状态信息(CSI),即只有当前和以前的TSI和CSI可以使用,但未来的TSI和CSI只能预测出某些错误。为了解决这个实时资源分配问题,我们提议了一种离线性优化方法。首先,我们考虑离线优化情况,假设拟议的TSI和CSI是完全已知的。在这种情况下,能源最小化问题相当于一个连接的状态问题,即只有当前和以前的TRI和C,而未来的LSI,只能预测 TSI和 CSI, 只能预测未来的TSI,通过一个基于最优化的双向式的配置方法,通过优化的双向式的配置的方法, 将一个基于最优化的双向的能源配置的方法, 优化的双向式的双向式的双向式的计算的方法,通过一种最佳的计算的方法,通过一种最优化的方法,通过一种最佳的计算的方法,来展示的方法,通过一种最佳的计算的方法展示式的计算的方法,来展示的方法,来展示的方法,将一个最佳的计算出一种最佳的计算出一种最佳的计算式的计算出一种最佳的方法,通过一种最佳的计算出一种最佳的系统。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
136+阅读 · 2018年10月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员