We give unconditional parameterized complexity lower bounds on pure dynamic programming algorithms - as modeled by tropical circuits - for connectivity problems such as the Traveling Salesperson Problem. Our lower bounds are higher than the currently fastest algorithms that rely on algebra and give evidence that these algebraic aspects are unavoidable for competitive worst case running times. Specifically, we study input graphs with a small width parameter such as treewidth and pathwidth and show that for any $k$ there exists a graph $G$ of pathwidth at most $k$ and $k^{O(1)}$ vertices such that any tropical circuit calculating the optimal value of a Traveling Salesperson round tour uses at least $2^{Ω(k \log \log k)}$ gates. We establish this result by linking tropical circuit complexity to the nondeterministic communication complexity of specific compatibility matrices. These matrices encode whether two partial solutions combine into a full solution, and Raz and Spieker [Combinatorica 1995] previously proved a lower bound for this complexity measure.
翻译:本文针对旅行商问题等连通性问题,在纯动态规划算法(以热带电路为模型)上给出了无条件的参数化复杂度下界。我们的下界高于当前依赖代数运算的最快算法,这为竞争性最坏情况运行时间必须包含代数特性提供了证据。具体而言,我们研究了具有较小宽度参数(如树宽和路径宽)的输入图,并证明对于任意 $k$,存在一个路径宽至多为 $k$、顶点数为 $k^{O(1)}$ 的图 $G$,使得任何计算旅行商问题环形游最优值的热带电路至少需要 $2^{Ω(k \log \log k)}$ 个门电路。我们通过将热带电路复杂度与特定兼容性矩阵的非确定性通信复杂度相关联来建立这一结果。这些矩阵编码了两个部分解是否能组合成完整解,而 Raz 和 Spieker [Combinatorica 1995] 先前已针对该复杂度度量证明了下界。