Consider the task of generating samples from a tilted distribution of a random vector whose underlying distribution is unknown, but samples from it are available. This finds applications in fields such as finance and climate science, and in rare event simulation. In this article, we discuss the asymptotic efficiency of a self-normalized importance sampler of the tilted distribution. We provide a sharp characterization of its accuracy, given the number of samples and the degree of tilt. Our findings reveal a surprising dichotomy: while the number of samples needed to accurately tilt a bounded random vector increases polynomially in the tilt amount, it increases at a super polynomial rate for unbounded distributions.


翻译:考虑从随机向量的倾斜分布中生成样本的任务,其中该随机向量的基础分布未知,但可获得其样本。这在金融、气候科学以及罕见事件模拟等领域有应用。在本文中,我们讨论了倾斜分布的自归一化重要性采样器的渐近效率。给定样本数量和倾斜程度,我们对其精度给出了一个尖锐的刻画。我们的研究结果揭示了一个惊人的二分现象:虽然准确倾斜一个有界随机向量所需的样本数量随倾斜量呈多项式增长,但对于无界分布,其增长速率却是超多项式的。

0
下载
关闭预览

相关内容

【ICML2025】时序分布漂移下的自适应估计与学习
专知会员服务
12+阅读 · 2025年5月25日
专知会员服务
33+阅读 · 2021年7月27日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月26日
VIP会员
相关VIP内容
【ICML2025】时序分布漂移下的自适应估计与学习
专知会员服务
12+阅读 · 2025年5月25日
专知会员服务
33+阅读 · 2021年7月27日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员