With the growing number of Location-Based Social Networks, privacy preserving location prediction has become a primary task for helping users discover new points-of-interest (POIs). Traditional systems consider a centralized approach that requires the transmission and collection of users' private data. In this work, we present FedPOIRec, a privacy preserving federated learning approach enhanced with features from users' social circles for top-$N$ POI recommendations. First, the FedPOIRec framework is built on the principle that local data never leave the owner's device, while the local updates are blindly aggregated by a parameter server. Second, the local recommenders get personalized by allowing users to exchange their learned parameters, enabling knowledge transfer among friends. To this end, we propose a privacy preserving protocol for integrating the preferences of a user's friends after the federated computation, by exploiting the properties of the CKKS fully homomorphic encryption scheme. To evaluate FedPOIRec, we apply our approach into five real-world datasets using two recommendation models. Extensive experiments demonstrate that FedPOIRec achieves comparable recommendation quality to centralized approaches, while the social integration protocol incurs low computation and communication overhead on the user side.
翻译:随着基于位置的社会网络数量的不断增加,隐私保护定位预测已成为帮助用户发现新的利益点(POIs)的一项主要任务。传统系统考虑一种需要传输和收集用户私人数据的集中化方法。在这项工作中,我们介绍了FedPoIRec,一种保护隐私的联邦学习方法,它通过用户社会圈的特征,强化了用户社会圈对POI建议的支持。首先,FedPoIRec框架基于以下原则,即当地数据永远不离开所有者的设备,而当地更新则由一个参数服务器盲目地汇总。第二,当地推荐者通过允许用户交流其学习参数而实现个性化化,使朋友之间能够进行知识转让。为此,我们提出一个隐私保护协议,通过利用CKKIS完全同型加密计划的特点,将用户朋友的偏好纳入联合计算过程。为了评估FDPOIRec,我们用两个建议模型将我们的方法应用于五个真实世界数据集。广泛的实验表明,FPOIRc的一方在中央化的用户通信中实现了可比的建议质量,同时,社会一体化协议的低位化的用户计算方法。