Wildland fire smoke exposures present an increasingly severe threat to public health, and thus there is a growing need for studying the effects of protective behaviors on improving health. Emerging smartphone applications provide unprecedented opportunities to study this important problem, but also pose novel challenges. Smoke Sense, a citizen science project, provides an interactive platform for participants to engage with a smartphone app that records air quality, health symptoms, and behaviors taken to reduce smoke exposures. We propose a new, doubly robust estimator of the structural nested mean model that accounts for spatially- and time-varying effects via a local estimating equation approach with geographical kernel weighting. Moreover, our analytical framework is flexible enough to handle informative missingness by inverse probability weighting of estimating functions. We evaluate the new method using extensive simulation studies and apply it to Smoke Sense survey data collected from smartphones for a better understanding of the relationship between smoke preventive measures and health effects. Our results estimate how the protective behaviors' effects vary over space and time and find that protective behaviors have more significant effects on reducing health symptoms in the Southwest than the Northwest region of the USA.
翻译:野地火灾暴露烟雾对公众健康构成日益严重的威胁,因此越来越需要研究保护性行为对改善健康的影响。 新兴智能手机应用为研究这一重要问题提供了前所未有的机会,但也带来了新的挑战。 公民科学项目Smoke Sense提供了一个互动平台,让参与者使用智能手机应用程序,记录空气质量、健康症状和为减少烟雾暴露而采取的行为。 我们提出了一个新的、加倍强力的结构性嵌套平均模型估计器,该模型通过带有地理内核重量的局部估计方程式计算空间和时间变化效应。 此外,我们的分析框架足够灵活,足以通过对估计功能进行反概率加权处理信息缺失问题。我们利用广泛的模拟研究来评估新方法,并将其应用于从智能手机收集的烟雾感调查数据,以便更好地了解烟雾预防措施与健康影响之间的关系。我们的结果估计了保护性行为在空间和时间上的不同影响,并发现保护性行为对减少西南地区健康症状的影响比美国西北地区更为显著。