Android malware is one of the most dangerous threats on the internet, and it's been on the rise for several years. Despite significant efforts in detecting and classifying android malware from innocuous android applications, there is still a long way to go. As a result, there is a need to provide a basic understanding of the behavior displayed by the most common Android malware categories and families. Each Android malware family and category has a distinct objective. As a result, it has impacted every corporate area, including healthcare, banking, transportation, government, and e-commerce. In this paper, we presented two machine-learning approaches for Dynamic Analysis of Android Malware: one for detecting and identifying Android Malware Categories and the other for detecting and identifying Android Malware Families, which was accomplished by analyzing a massive malware dataset with 14 prominent malware categories and 180 prominent malware families of CCCS-CIC-AndMal2020 dataset on Dynamic Layers. Our approach achieves in Android Malware Category detection more than 96 % accurate and achieves in Android Malware Family detection more than 99% accurate. Our approach provides a method for high-accuracy Dynamic Analysis of Android Malware while also shortening the time required to analyze smartphone malware.
翻译:机器人恶意软件是互联网上最危险的威胁之一, 并且它已经上升了好几年。 尽管在检测和分类方面做出了大量努力, 并且从无害和机器人应用中发现了机器人恶意软件, 但还有很长的路要走。 因此, 需要提供对最常见的和机器人恶意软件类别和家庭所显示的行为的基本理解。 每个和机器人恶意软件家庭和类别有一个截然不同的目标。 结果, 它影响到每个公司领域, 包括医疗保健、 银行、 交通、 政府、 和电子商务。 在本文中, 我们展示了两种用于Andromonard Maware动态分析的机器学习方法: 一种用于检测和识别Android Maware类别, 另一种用于检测和识别Android Maware家庭。 我们的方法是通过分析一个大型恶意软件数据集, 包括14个突出的恶意软件类别以及CCS- CIC- AndMal220 数据组的180个突出的恶意软件家庭。 我们的方法在Android Malaware 类中实现了超过96 % 的精确度检测, 在Androd Mailware Forate器中实现了比99%的精确。 我们的智能智能分析方法也提供了一种高的智能智能智能分析。