Android malware is one of the most dangerous threats on the internet, and it's been on the rise for several years. Despite significant efforts in detecting and classifying android malware from innocuous android applications, there is still a long way to go. As a result, there is a need to provide a basic understanding of the behavior displayed by the most common Android malware categories and families. Each Android malware family and category has a distinct objective. As a result, it has impacted every corporate area, including healthcare, banking, transportation, government, and e-commerce. In this paper, we presented two machine-learning approaches for Dynamic Analysis of Android Malware: one for detecting and identifying Android Malware Categories and the other for detecting and identifying Android Malware Families, which was accomplished by analyzing a massive malware dataset with 14 prominent malware categories and 180 prominent malware families of CCCS-CIC-AndMal2020 dataset on Dynamic Layers. Our approach achieves in Android Malware Category detection more than 96 % accurate and achieves in Android Malware Family detection more than 99% accurate. Our approach provides a method for high-accuracy Dynamic Analysis of Android Malware while also shortening the time required to analyze smartphone malware.


翻译:机器人恶意软件是互联网上最危险的威胁之一, 并且它已经上升了好几年。 尽管在检测和分类方面做出了大量努力, 并且从无害和机器人应用中发现了机器人恶意软件, 但还有很长的路要走。 因此, 需要提供对最常见的和机器人恶意软件类别和家庭所显示的行为的基本理解。 每个和机器人恶意软件家庭和类别有一个截然不同的目标。 结果, 它影响到每个公司领域, 包括医疗保健、 银行、 交通、 政府、 和电子商务。 在本文中, 我们展示了两种用于Andromonard Maware动态分析的机器学习方法: 一种用于检测和识别Android Maware类别, 另一种用于检测和识别Android Maware家庭。 我们的方法是通过分析一个大型恶意软件数据集, 包括14个突出的恶意软件类别以及CCS- CIC- AndMal220 数据组的180个突出的恶意软件家庭。 我们的方法在Android Malaware 类中实现了超过96 % 的精确度检测, 在Androd Mailware Forate器中实现了比99%的精确。 我们的智能智能分析方法也提供了一种高的智能智能智能分析。

0
下载
关闭预览

相关内容

Android(安卓)是一种以 Linux 为基础开发的开放源代码的操作系统,主要应用于便携设备。2005 年,Android 公司被 Google 收购,随后 Google 联合制造商组成开放手机联盟。Android 已从智能手机领域逐渐扩展到平板电脑、智能电视(及机顶盒)、游戏机、物联网、智能手表、车载系统、VR以及PC等领域。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
60+阅读 · 2020年3月19日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员