This paper considers the problem of multi-modal future trajectory forecast with ranking. Here, multi-modality and ranking refer to the multiple plausible path predictions and the confidence in those predictions, respectively. We propose Social-STAGE, Social interaction-aware Spatio-Temporal multi-Attention Graph convolution network with novel Evaluation for multi-modality. Our main contributions include analysis and formulation of multi-modality with ranking using interaction and multi-attention, and introduction of new metrics to evaluate the diversity and associated confidence of multi-modal predictions. We evaluate our approach on existing public datasets ETH and UCY and show that the proposed algorithm outperforms the state of the arts on these datasets.
翻译:本文探讨了未来多模式轨迹的排名预测问题。这里,多模式和排名分别是指多种可信的路径预测和对这些预测的信心。我们建议社会-STAGE、社会互动-了解SPatio-Temporal-Tempal-Tempal-Avolution Convolution 网络和新的多模式评估。我们的主要贡献包括分析和制定多模式,使用互动和多目的排序,以及采用新的衡量标准来评估多模式预测的多样性和相关信任度。我们评估了我们对现有的公共数据集ETH和UCY采用的方法,并表明拟议的算法优于这些数据集的艺术状态。