We consider the problem of video caching across a set of 5G small-cell base stations (SBS) connected to each other over a high-capacity short-delay back-haul link, and linked to a remote server over a long-delay connection. Even though the problem of minimizing the overall video delivery delay is NP-hard, the Collaborative Caching Algorithm (CCA) that we present can efficiently compute a solution close to the optimal, where the degree of sub-optimality depends on the worst case video-to-cache size ratio. The algorithm is naturally amenable to distributed implementation that requires zero explicit coordination between the SBSs, and runs in $O(N + K \log K)$ time, where $N$ is the number of SBSs (caches) and $K$ the maximum number of videos. We extend CCA to an online setting where the video popularities are not known a priori but are estimated over time through a limited amount of periodic information sharing between SBSs. We demonstrate that our algorithm closely approaches the optimal integral caching solution as the cache size increases. Moreover, via simulations carried out on real video access traces, we show that our algorithm effectively uses the SBS caches to reduce the video delivery delay and conserve the remote server's bandwidth, and that it outperforms two other reference caching methods adapted to our system setting.
翻译:我们考虑的是5G小型基站(SBS)相互连接的视频在5G小细胞基站之间的隔热问题,通过高容量的短缓缓冲回航连接,在长缓冲连接中与远程服务器连接。尽管将视频传送总体延迟最小化的问题是NP硬的,但我们所介绍的CA合作Caching Algorithm(CCA)可以有效地计算出一种接近于最佳的解决方案,即亚优化程度取决于最差的视频对缓冲大小比例。这种算法自然适合分布式的实施,这需要SBS之间零明确协调,运行时间为$(N+K\log K),运行时间为$($ +K), 将整个视频传送延迟为$( caches) 和 $( $) 最多视频数量。 我们将CCA推广到一个在线环境, 视频普及程度不为人们所熟知,但通过SBS的定期信息共享有限时间估算。 我们证明我们的算法非常接近于最佳整体缓缓缓冲解决方案,因为缓冲参照系统的规模会增加。 此外,我们通过模拟的SBS-BS级的视频传输系统有效显示SBS级交付速度。