Many representative graph neural networks, e.g., GPR-GNN and ChebNet, approximate graph convolutions with graph spectral filters. However, existing work either applies predefined filter weights or learns them without necessary constraints, which may lead to oversimplified or ill-posed filters. To overcome these issues, we propose BernNet, a novel graph neural network with theoretical support that provides a simple but effective scheme for designing and learning arbitrary graph spectral filters. In particular, for any filter over the normalized Laplacian spectrum of a graph, our BernNet estimates it by an order-$K$ Bernstein polynomial approximation and designs its spectral property by setting the coefficients of the Bernstein basis. Moreover, we can learn the coefficients (and the corresponding filter weights) based on observed graphs and their associated signals and thus achieve the BernNet specialized for the data. Our experiments demonstrate that BernNet can learn arbitrary spectral filters, including complicated band-rejection and comb filters, and it achieves superior performance in real-world graph modeling tasks. Code is available at https://github.com/ivam-he/BernNet.
翻译:许多具有代表性的图形神经网络,例如GPR-GNNN和ChebNet, 与图形光谱过滤器相近的图形相联,然而,现有的工作要么采用预先定义的过滤器重量,要么在没有必要限制的情况下学习这些重量,这可能导致过滤器过于简单或错误。为了克服这些问题,我们提议伯尔尼Net,这是一个具有理论支持的新颖的图形神经网络,为设计和学习任意的图形光谱过滤器提供了简单而有效的计划。特别是,对于一个图形的普通拉普拉西亚频谱的任何过滤器,我们的伯尔尼Net估计它使用一个定值-K$ Bernstein 多边近似值,并通过设定伯尔尼斯坦基值的系数来设计其光谱属性。此外,我们可以根据观测到的图形及其相关信号来学习系数(和相应的过滤器重量),从而实现伯尔尼网络专门为数据提供的一种简单而有效的计划。我们的实验表明,伯尔尼Net可以学习任意的光谱过滤器,包括复杂的波段反射器和梳过滤器,并在真实世界的图形模拟任务中取得较优的性性性性功能。代码可在 http://Bemb姆/comheth. 。