Large Language Models (LLMs) have shown impressive potential in generating Verilog codes, but ensuring functional correctness remains a challenge. Existing approaches often rely on self-consistency or simulation feedback to select the best candidate, but they miss opportunities to focus LLM reasoning on the most informative parts of the design. We propose VFocus, a three-stage framework that enhances Verilog generation by sharpening the focus of LLM reasoning onto critical decision points in the code generation process. In the \textbf{pre-ranking stage}, VFocus generates multiple code candidates through LLM prompting, retries for syntactically valid outputs, and introduces a \textit{Density-guided Filtering} to retain candidates that fall within the "reasoning sweet spot" for functional correctness. In the \textbf{ranking stage}, we simulate each code candidate using an automatically generated testbench and apply self-consistency-based clustering to identify the most consistent outputs. Finally, in the \textbf{post-ranking refinement stage}, VFocus performs inconsistency mining on top-ranked candidates and invokes reasoning-augmented LLM prompts for candidate refinement. Experiments on the VerilogEval-Human benchmark show that VFocus significantly improves the pass@1 correctness across multiple reasoning LLMs, demonstrating its effectiveness in enhancing Verilog generation for complex hardware design tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员