Balanced hypergraph partitioning is a classical NP-hard optimization problem with applications in various domains such as VLSI design, simulating quantum circuits, optimizing data placement in distributed databases or minimizing communication volume in high-performance computing. Engineering parallel heuristics for this problem is a topic of recent research. Most of them are non-deterministic though. In this work, we design and implement a highly scalable deterministic algorithm in the state-of-the-art parallel partitioning framework Mt-KaHyPar. On our extensive set of benchmark instances, it achieves similar partition quality and performance as a comparable but non-deterministic configuration of Mt-KaHyPar and outperforms the only other existing parallel deterministic algorithm BiPart regarding partition quality, running time and parallel speedups.
翻译:平衡高射分配是一个典型的NP硬优化问题,在VLSI设计、模拟量子电路、优化分布式数据库中的数据位置或最大限度地减少高性能计算中的通信量等不同领域的应用都存在这种典型的NP硬性优化问题。 这个问题的平行结构是最近研究的一个课题。 大部分是非决定性的。 在这项工作中, 我们设计并实施了一种高度可扩展的确定性算法, 在最先进的平行分区框架 Mt- KaHyPar 中。 在我们广泛的基准实例中, 它取得了类似分布质量和性能, 类似于Mt- KaHyPar 的可比但非决定性的配置, 并且超越了目前唯一关于分割质量、运行时间和平行加速的其他平行确定性算法。