Advertisers play an important role in e-commerce platforms, whose advertising expenditures are the main source of revenue for e-commerce platforms. Therefore, providing advertisers with a better advertising experience by reducing their cost of trial and error during ad real-time bidding is crucial to the long-term revenue of e-commerce platforms. To achieve this goal, the advertising platform needs to understand the advertisers' unique marketing demands and actively recommend personalized and optimal advertising strategies for them. In this work, we first deploy a prototype recommender system on Taobao display advertising platform for constant bid and crowd optimization. Then, we propose a novel recommender system for dynamic bidding strategy recommendation, which models the advertiser's strategy recommendation problem as a contextual bandit problem. We use a neural network as the agent to predict the advertisers' demands based on their profile and historical adoption behaviors. Based on the estimated demand, we apply simulated bidding to derive the optimal bidding strategy for recommendation and interact with the advertiser by displaying the possible advertising performance. To solve the exploration/exploitation dilemma, we use Dropout to represent the uncertainty of the network, which approximately equals to conduct Thompson sampling for efficient strategy exploration. Online evaluations show that the system can optimize the advertisers' advertising performance, and advertisers are willing to open the system, select and adopt the suggestions, which further increases the platform's revenue income. Simulation experiments based on Alibaba online bidding data prove that the agent can effectively optimize the adoption rate of advertisers, and Thompson sampling can better balance exploration and exploitation to further optimize the performance of the model.


翻译:广告商在电子商务平台中发挥着重要作用,其广告支出是电子商务平台的主要收入来源。因此,广告商在实时投标中降低其试算和错误成本,从而向广告商提供更好的广告经验,对于电子商务平台的长期收入至关重要。为了实现这一目标,广告平台需要了解广告商独特的营销需求,积极推荐适合他们的个人化和最佳广告战略。在这项工作中,我们首先在道保上安装一个原型推荐系统,为不断的投标和人群优化设置广告平台。然后,我们提出一个新的动态招标战略建议推荐系统,将广告商的战略建议问题作为背景强盗问题加以示范。我们利用一个神经网络作为代理商,根据广告商的概况和历史采纳行为预测其需求。根据估计需求,我们采用模拟投标,为推荐提供最佳的投标战略,并通过展示可能的优化广告绩效。为了解决勘探/利用困境,我们使用“丢弃”来代表网络的不确定性,以广告商的战略建议问题作为背景为背景。我们使用神经网络作为工具,根据广告商的概况预测广告商的需求和历史采纳行为行为。我们使用模拟招标系统来进行更精确的测试。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
4+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
4+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员