项目名称: 恶性肿瘤生物适形调强放疗PET/CT/MRI靶区智能勾画

项目编号: No.61271382

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 刘国才

作者单位: 湖南大学

项目金额: 80万元

中文摘要: 在每年新增的两百多万癌症患者中,70%以上需要进行放射治疗。生物适形调强放疗成功实施的关键在生物靶区的高精度勾画,其本质是肿瘤分子生物特性功能影像PET图像分割,但肿瘤内部生物特性的各向异性特性和目前临床肿瘤PET图像固有的低空间解析度、强噪声与严重的部分容积效应,使高精度的肿瘤放疗生物靶区图像分割非常困难。因此,本项目提出联合肿瘤PET和高解析度的CT、MRI高阶纹理特征,采用各向异性向量值变分图像分割模型和水平集方法,集成临床专家肿瘤靶区勾画和组织病理知识,进行肿瘤靶区图像的高精度分割和智能勾画验证评估临床研究。为进一步提高靶区分割精度,计划将高解析度的肿瘤CT、MRI解剖结构信息集成到PET图像的最大后验概率统计重建和部分容积效应校正模型中,进行最大化PET图像空间解析度的统计重建优化方法和最小化肿瘤PET部分容积效应校正方法研究。对恶性肿瘤高精度放疗具有重要理论和临床应用研究价值。

中文关键词: 图像分割;PET/CT/MRI;放疗靶区勾画;放射治疗;头颈部肿瘤

英文摘要: Each year, the estimated number of new cancer cases in China is over 2 million and 70% of them need radiotherapy. In this era of high-precision biological conformal intensity-modulated radiotherapy, the accurate delieation of target volume with respect to tumor boundaries, shape, and volume is crucial, which may be achieved theoretically by the segmentation of PET tumor images. However, it is very difficult in practice due to the heterogeneity inside tumors and the low resolution , large noise and partial-volume effect(PVE) in PET tumor imaging. So, we propose that the PET, CT, and MRI textural characterizations such as coarseness, contrast, and busyness are extracted and used to the segmentation of PET tumor images via level set methodes and variational principles with clinical priors and a heterogeneous intensity model. The accuracy of the delineation of target volume is validated by pathologic examination. Moreover, the high-resolution image from CT or MRI is incorporated in the low-resolution PET image to yield a minimum PVE-corrected image and a maximum resolution PET reconstruction image by a maximum-a-posteriori approach.This project is very important to high-precision radiotherapy in theory and in clinical researches.

英文关键词: Image Segmentation;PET/CT/MRI;Delieation of target volume;Radiotherapy treatment planning;Head and neck cancer

成为VIP会员查看完整内容
0

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
14+阅读 · 2022年3月4日
迁移学习方法在医学图像领域的应用综述
专知会员服务
59+阅读 · 2022年1月6日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2020年9月18日
最新《医学图像深度语义分割》综述论文
专知会员服务
94+阅读 · 2020年6月7日
自动化所人工智能辅助诊断方法进入肿瘤诊疗指南
中国科学院自动化研究所
1+阅读 · 2021年9月3日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Differentiable Time-Frequency Scattering in Kymatio
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
14+阅读 · 2022年3月4日
迁移学习方法在医学图像领域的应用综述
专知会员服务
59+阅读 · 2022年1月6日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2020年9月18日
最新《医学图像深度语义分割》综述论文
专知会员服务
94+阅读 · 2020年6月7日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员