Emotions are usually evoked in humans by images. Recently, extensive research efforts have been dedicated to understanding the emotions of images. In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective with the focus on summarizing recent advances and suggesting future directions. We begin with commonly used emotion representation models from psychology. We then define the key computational problems that the researchers have been trying to solve and provide supervised frameworks that are generally used for different IEA tasks. After the introduction of major challenges in IEA, we present some representative methods on emotion feature extraction, supervised classifier learning, and domain adaptation. Furthermore, we introduce available datasets for evaluation and summarize some main results. Finally, we discuss some open questions and future directions that researchers can pursue.
翻译:情感通常在人类中被图像所唤起。 最近, 广泛的研究努力致力于理解图像的情感。 在本章中, 我们的目标是从计算角度引入图像情感分析( IEA ), 重点是总结最新进展和提出未来方向。 我们首先从心理学中常用的情感代表模型开始。 然后我们定义研究人员试图解决的关键计算问题, 并提供通常用于国际能源机构不同任务的监督框架。 在国际能源机构引入了重大挑战之后, 我们提出了一些关于情感特征提取、 监管分类学习和领域适应的有代表性的方法。 此外, 我们引入了可用于评估的数据集, 并总结了一些主要结果。 最后, 我们讨论了一些开放的问题和研究人员可以追求的未来方向。