The Quantum CONGEST model is a variant of the CONGEST model, where messages consist of $O(\log(n))$ qubits. We give a general framework for implementing quantum query algorithms in Quantum CONGEST, using the concept of parallel-queries. We apply our framework for distributed quantum queries in two settings: when data is distributed over the network, and graph theoretical problems where the network defines the input. The first is slightly unusual in CONGEST but our results follow almost directly. The second is more traditional for the CONGEST model but here we require some classical CONGEST steps to get our results. In the setting with distributed data, we show how a network can schedule a meeting in one of $k$ dates using $\tilde{O}(\sqrt{kD}+D)$ rounds, with $D$ the network diameter. We also give an efficient algorithm for element distinctness: if all nodes are given numbers, then the nodes can find any duplicates in $\tilde{O}(n^{2/3}D^{1/3})$ rounds. We also generalize the protocol for the distributed Deutsch-Jozsa problem from the two-party setting considered in [arXiv:quant-ph/9802040] to general networks, giving a novel separation between exact classical and exact quantum protocols in CONGEST. When the input is the network structure itself, we almost directly recover the $O(\sqrt{nD})$ round diameter computation algorithm of Le Gall and Magniez [arXiv:1804.02917]. We also compute the radius in the same number of rounds, and give an $\epsilon$-additive approximation of the average eccentricity in $\tilde{O}(D+D^{3/2}/\epsilon)$ rounds. Finally, we give quantum speedups for the problems of cycle detection and girth computation. We detect whether a graph has a cycle of length at most $k$ in $O(D+(Dn)^{1/2-1/\Theta(k)})$ rounds. We also give a $\tilde{O}(D+(Dn)^{1/2-1/\Theta(g)})$ round algorithm for finding the girth $g$, beating the known classical lower bound.
翻译:Qauntum COMONEST 模式是 CONEST 模式的一种变体, 信息由 $O( log( n) $ qubits 。 我们用平行查询的概念在 Qauntum COMEST 中提供一个执行量子查询算法的一般框架。 我们用两种设置来应用分布量查询的框架: 当数据在网络中分布时, 并绘制网络定义输入的理论问题。 第一个在 CONEST 中略有不同, 但结果几乎直接跟随。 第二个对于 CONEST 模式来说更为传统, 但是我们需要一些经典的 CONEST 步骤来获取结果。 在使用分布数据的设置中, 我们如何用 $tilde{ (\ phrt{kD ⁇ D) 来安排一个以美元为单位的会议。 我们还给出了元素特性的高效算法: 如果给出了所有节数, 那么节点可以找到任何复制的 $( \) e- 美元 Q_ 美元 。 DQ_ 美元 3⁄ 3} D_ 以 美元 自己在运行中 向 提供一个普通的 。