The Quantum CONGEST model is a variant of the CONGEST model, where messages consist of $O(\log(n))$ qubits. We give a general framework for implementing quantum query algorithms in Quantum CONGEST, using the concept of parallel-queries. We apply our framework for distributed quantum queries in two settings: when data is distributed over the network, and graph theoretical problems where the network defines the input. The first is slightly unusual in CONGEST but our results follow almost directly. The second is more traditional for the CONGEST model but here we require some classical CONGEST steps to get our results. In the setting with distributed data, we show how a network can schedule a meeting in one of $k$ dates using $\tilde{O}(\sqrt{kD}+D)$ rounds, with $D$ the network diameter. We also give an efficient algorithm for element distinctness: if all nodes are given numbers, then the nodes can find any duplicates in $\tilde{O}(n^{2/3}D^{1/3})$ rounds. We also generalize the protocol for the distributed Deutsch-Jozsa problem from the two-party setting considered in [arXiv:quant-ph/9802040] to general networks, giving a novel separation between exact classical and exact quantum protocols in CONGEST. When the input is the network structure itself, we almost directly recover the $O(\sqrt{nD})$ round diameter computation algorithm of Le Gall and Magniez [arXiv:1804.02917]. We also compute the radius in the same number of rounds, and give an $\epsilon$-additive approximation of the average eccentricity in $\tilde{O}(D+D^{3/2}/\epsilon)$ rounds. Finally, we give quantum speedups for the problems of cycle detection and girth computation. We detect whether a graph has a cycle of length at most $k$ in $O(D+(Dn)^{1/2-1/\Theta(k)})$ rounds. We also give a $\tilde{O}(D+(Dn)^{1/2-1/\Theta(g)})$ round algorithm for finding the girth $g$, beating the known classical lower bound.


翻译:Qauntum COMONEST 模式是 CONEST 模式的一种变体, 信息由 $O( log( n) $ qubits 。 我们用平行查询的概念在 Qauntum COMEST 中提供一个执行量子查询算法的一般框架。 我们用两种设置来应用分布量查询的框架: 当数据在网络中分布时, 并绘制网络定义输入的理论问题。 第一个在 CONEST 中略有不同, 但结果几乎直接跟随。 第二个对于 CONEST 模式来说更为传统, 但是我们需要一些经典的 CONEST 步骤来获取结果。 在使用分布数据的设置中, 我们如何用 $tilde{ (\ phrt{kD ⁇ D) 来安排一个以美元为单位的会议。 我们还给出了元素特性的高效算法: 如果给出了所有节数, 那么节点可以找到任何复制的 $( \) e- 美元 Q_ 美元 。 DQ_ 美元 3⁄ 3} D_ 以 美元 自己在运行中 向 提供一个普通的 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
85+阅读 · 2020年12月5日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
专知会员服务
85+阅读 · 2020年12月5日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员