Inferring interactions from multi-agent trajectories has broad applications in physics, vision and robotics. Neural relational inference (NRI) is a deep generative model that can reason about relations in complex dynamics without supervision. In this paper, we take a careful look at this approach for relational inference in multi-agent trajectories. First, we discover that NRI can be fundamentally limited without sufficient long-term observations. Its ability to accurately infer interactions degrades drastically for short output sequences. Next, we consider a more general setting of relational inference when interactions are changing overtime. We propose an extension ofNRI, which we call the DYnamic multi-AgentRelational Inference (DYARI) model that can reason about dynamic relations. We conduct exhaustive experiments to study the effect of model architecture, under-lying dynamics and training scheme on the performance of dynamic relational inference using a simulated physics system. We also showcase the usage of our model on real-world multi-agent basketball trajectories.
翻译:多试剂轨迹的相互作用在物理学、视觉学和机器人学中具有广泛的应用。神经关系推断(NRI)是一个深层次的基因模型,可以解释复杂的动态关系,而无需监督。在本文件中,我们仔细研究多试剂轨迹中的关联推断方法。首先,我们发现,如果没有足够的长期观测,NRI可以从根本上加以限制。它精确推断相互作用会为短输出序列而急剧降解。接下来,我们考虑在相互作用改变加班时更普遍地设定关系推断。我们建议扩展NRI,我们称之为DYNAmic 多重关系推断(DYARI)模型,可以解释动态关系。我们进行详尽的实验,研究模型结构的影响,利用模拟物理学系统对动态关系推断的性能进行基础动力和训练计划。我们还展示了我们模型在现实世界多试剂篮球轨迹上的使用情况。