We present MT-lib, an efficient message transfer library for messages gather and scatter in benchmarks like Graph500 for Supercomputers. Our library includes MST version as well as new-MST version. The MT-lib is deliberately kept light-weight, efficient and friendly interfaces for massive graph traverse. MST provides (1) a novel non-blocking communication scheme with sending and receiving messages asynchronously to overlap calculation and communication;(2) merging messages according to the target process for reducing communication overhead;(3) a new communication mode of gathering intra-group messages before forwarding between groups for reducing communication traffic. In MT-lib, there are (1) one-sided message; (2) two-sided messages; and (3) two-sided messages with buffer, in which dynamic buffer expansion is built for messages delivery. We experimented with MST and then testing Graph500 with MST on Tianhe supercomputers. Experimental results show high communication efficiency and high throughputs for both BFS and SSSP communication operations.


翻译:我们展示了MT-lib, 一个有效的信息传输库,用于收集和散布信息,例如用于超级计算机的图五500等基准。我们的图书馆包括MST版本和新的MST版本。MT-lib是刻意保持大型图形横行的轻量、高效和友好界面。MST提供(1) 一个新型的无阻通信计划,其发送和接收信息时不时地重复计算和通信;(2) 根据减少通信间接费用的目标程序合并信息;(3) 一种在群体之间收集内部信息以降低通信流量的新通信模式。在MT-lib中,有(1) 单面信息;(2) 双面信息;(3) 带有缓冲的双面信息,其中为发送信息建立动态缓冲扩展。我们与MST进行了实验,然后在天河超级计算机上测试MST500图。实验结果显示BFS和SSP通信操作的通信效率和高传输量。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
系列教程GNN-algorithms之七:《图同构网络—GIN》
专知会员服务
47+阅读 · 2020年8月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员