With the popularity of Non-Fungible Tokens (NFTs), NFTs have become a new target of phishing attacks, posing a significant threat to the NFT trading ecosystem. There has been growing anecdotal evidence that new means of NFT phishing attacks have emerged in Ethereum ecosystem. Most of the existing research focus on detecting phishing scam accounts for native cryptocurrency on the blockchain, but there is a lack of research in the area of phishing attacks of emerging NFTs. Although a few studies have recently started to focus on the analysis and detection of NFT phishing attacks, NFT phishing attack means are diverse and little has been done to understand these various types of NFT phishing attacks. To the best of our knowledge, we are the first to conduct case retrospective analysis and measurement study of real-world historical NFT phishing attacks on Ethereum. By manually analyzing the existing scams reported by Chainabuse, we classify NFT phishing attacks into four patterns. For each pattern, we further investigate the tricks and working principles of them. Based on 469 NFT phishing accounts collected up until October 2022 from multiple channels, we perform a measurement study of on-chain transaction data crawled from Etherscan to characterizing NFT phishing scams by analyzing the modus operandi and preferences of NFT phishing scammers, as well as economic impacts and whereabouts of stolen NFTs. We classify NFT phishing transactions into one of the four patterns by log parsing and transaction record parsing. We find these phishing accounts stole 19,514 NFTs for a total profit of 8,858.431 ETH (around 18.57 million dollars). We also observe that scammers remain highly active in the last two years and favor certain categories and series of NFTs, accompanied with signs of gang theft.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员