We present automatically parameterised Fully Homomorphic Encryption (FHE) for encrypted neural network inference and exemplify our inference over FHE compatible neural networks with our own open-source framework and reproducible examples. We use the 4th generation Cheon, Kim, Kim and Song (CKKS) FHE scheme over fixed points provided by the Microsoft Simple Encrypted Arithmetic Library (MS-SEAL). We significantly enhance the usability and applicability of FHE in deep learning contexts, with a focus on the constituent graphs, traversal, and optimisation. We find that FHE is not a panacea for all privacy preserving machine learning (PPML) problems, and that certain limitations still remain, such as model training. However we also find that in certain contexts FHE is well suited for computing completely private predictions with neural networks. The ability to privately compute sensitive problems more easily, while lowering the barriers to entry, can allow otherwise too-sensitive fields to begin advantaging themselves of performant third-party neural networks. Lastly we show how encrypted deep learning can be applied to a sensitive real world problem in agri-food, i.e. strawberry yield forecasting, demonstrating competitive performance. We argue that the adoption of encrypted deep learning methods at scale could allow for a greater adoption of deep learning methodologies where privacy concerns exists, hence having a large positive potential impact within the agri-food sector and its journey to net zero.
翻译:我们为加密神经网络的加密神经网络推断,自动提出完全基因加密参数(FHE),并举例说明了我们对FHE兼容神经网络的推断,我们有自己的开放源代码框架和可复制的例子。我们使用第四代Cheon、Kim、Kim和Song(CKKS)FHE(CKS)计划,在微软简单加密智能智能智能图书馆(MS-SEAAL)提供的固定点上进行计算。我们大大提高了FHE在深层学习环境中的可用性和适用性,重点是组成图、Transal和优化。我们发现,FHE并不是所有隐私保存机器学习(PPML)问题的灵丹妙药,某些限制仍然存在,例如示范培训。但我们也发现,在某些情况下,FHE非常适合用神经网络(MS-SEEAL)提供完全的私人预测。在降低进入障碍的同时,可以使FHE在深层学习领域变得过于敏感,从而能够适应第三方神经网络。最后,我们证明深层的深层学习可以用来进行深层次的深度的深度研究,在深度研究,在深度研究中学习一个高科技网络中,从而展示其真实的收益。我们可以研究。在高科技网络中学习一个更大的方法中学习。