This doctoral thesis covers some of my advances in electron microscopy with deep learning. Highlights include a comprehensive review of deep learning in electron microscopy; large new electron microscopy datasets for machine learning, dataset search engines based on variational autoencoders, and automatic data clustering by t-distributed stochastic neighbour embedding; adaptive learning rate clipping to stabilize learning; generative adversarial networks for compressed sensing with spiral, uniformly spaced and other fixed sparse scan paths; recurrent neural networks trained to piecewise adapt sparse scan paths to specimens by reinforcement learning; improving signal-to-noise; and conditional generative adversarial networks for exit wavefunction reconstruction from single transmission electron micrographs. This thesis adds to my publications by presenting their relationships, reflections, and holistic conclusions. This copy of my thesis is typeset for online dissemination to improve readability, whereas the thesis submitted to the University of Warwick in support of my application for the degree of Doctor of Philosophy in Physics will be typeset for physical printing and binding.
翻译:这个博士论文涵盖我在电子显微镜方面的一些进步,并深层学习。重点包括全面审查电子显微镜方面的深层学习;大型新的电子显微镜数据集,用于机器学习,基于变式自动读取器的数据集搜索引擎,以及由T分布式随机邻居嵌入的自动数据集;适应性学习速度剪辑,以稳定学习;通过螺旋、统一空间和其他固定的稀有扫描路径进行压缩感应的遗传对抗网络;经过训练的经常性神经网络,通过强化学习将稀薄的扫描路径与标本相适应;改进信号到声音;以及用单一传输电子显微镜进行退出波元重建的有条件的基因对抗网络。这本论文增加了我的出版物,展示了它们的关系、反射和整体结论。我的论文副本是用于在线传播以提高可读性的,而提交Warwick大学的论文将支持我申请物理哲学博士学位的论文将打字和约束性。