Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected graphs is among the most prominent problems of algorithmic graph theory. For $n$-vertex and $m$-edge graphs, the best known algorithms run in $\widetilde{O}(m\sqrt{n})$ time. We build on recent theoretical work focusing on linear-time data reduction rules for finding maximum-cardinality matchings and complement the theoretical results by presenting and analyzing (thereby employing the kernelization methodology of parameterized complexity analysis) new (near-)linear-time data reduction rules for both the unweighted and the positive-integer-weighted case. Moreover, we experimentally demonstrate that these data reduction rules provide significant speedups of the state-of-the art implementations for computing matchings in real-world graphs: the average speedup factor is 4.7 in the unweighted case and 12.72 in the weighted case.
翻译:在(高级加权)未定向图表中找到最大心智匹配或最大重量匹配是算法图形理论中最突出的问题之一。对于 $n$-verdex 和 $m$-gedge 图形来说,最已知的算法运行于 $\ loblytilde{O}(m\sqrt{n}) 美元时间。 我们以最近侧重于线性时间数据减少规则的理论工作为基础,寻找最大心智匹配,并通过展示和分析(从而采用参数化复杂分析的内分解方法)新的(近距离)线性数据减少规则来补充理论结果。对于未加权和正数加权案例来说,我们实验性地证明,这些数据减少规则为现实世界图形中计算匹配的状态艺术应用提供了显著的加速:在未加权案例中,平均加速系数为4.7,在加权案例中为12.72。