In this paper, we generalize methods in the Difference in Differences (DiD) literature by showing that both additive and multiplicative standard and coarse Structural Nested Mean Models (Robins, 1994, 1997, 1998, 2000, 2004; Lok and Degruttola, 2012; Vansteelandt and Joffe, 2014) are identified under parallel trends assumptions. Our methodology enables adjustment for time-varying covariates, identification of effect heterogeneity as a function of time-varying covariates, identification of additional causal contrasts (such as effects of a `blip' of treatment at a single time point followed by no further treatment and controlled direct effects), and estimation of treatment effects under a general class of treatment patterns (e.g. we do not restrict to the `staggered adoption' setting, and treatments can be multidimensional with any mix of categorical and continuous components). We stress that these extensions come essentially for free, as our parallel trends assumption is not stronger than other parallel trends assumptions in the DiD literature. We also provide a method for sensitivity analysis to violations of our parallel trends assumption. However, in contrast to much of the DiD literature, we only consider panel data, not repeated cross sectional data. We also explain how to estimate optimal treatment regimes via optimal regime Structural Nested Mean Models under parallel trends assumptions plus an additional extremely strong assumption that there is no effect modification by unobserved confounders. Finally, we illustrate our methods with real data applications estimating effects of bank deregulation on housing prices and effects of floods on flood insurance take-up.
翻译:在本文中,我们概括了差异差异(DID)文献中的方法,表明在平行趋势假设下确定“差异(Robins,1994年、1997年、1998年、2000年、2004年、Lok和Degruttola,2012年;Vansteelandt和Joffe,2014年),在平行趋势假设下发现“差异(DID)模型”中的方法,我们的方法可以调整时间变化的共变差异,将影响异异性确定为时间变化的共变函数,确定其他因果对比(例如,在单一时间点的治疗“翻转”效应之后不再治疗和控制的直接效应),以及在一般治疗模式下对治疗效应的估计(例如,我们不限制“错采用”的设置,而处理方式可以是多层面的,任何明确和连续的组成部分组合。我们强调,这些扩展基本上是免费的,因为我们的平行趋势假设并不比DID文献中的其他平行趋势假设更强。我们还提供一种方法,用以对违反我们平行趋势假设的情况进行敏感性分析。然而,我们用“结构模型”的模型和“最优度假设下的数据”只是根据“最优化的假设,我们根据“最优度分析,我们通过“最优的模型”的假设,我们如何的模型分析。