Browser fingerprinting is a stateless tracking technique that attempts to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade, for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is also the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.


翻译:浏览器指纹是一种无国籍追踪技术,试图将多种不同的网络API所披露的信息结合起来,为跟踪网络用户创建独特的识别特征。在过去的十年中,跟踪器滥用了几个现有和新提议的网络识别特征,以进一步加强浏览器指纹。现有方法仅限于在特定时间点检测特定的指纹技术。因此,他们无法系统地检测滥用不同网络API的新指纹技术。在本文中,我们建议采用FP-Radar,这是一种机器学习方法,利用过去十年来在100K顶网站对网络API使用情况的纵向测量,以早期发现新的和不断发展的浏览器指纹技术。结果显示,FP-Radar能够及早发现新引入的已知特性(例如WebGL、Sensor)和先前未知的(例如Gamepad、Clippbo)的指纹技术。对于浏览器指纹指纹而言,PFP-Radar也是我们最了解如何在过去十年中检测可视性API被滥用情况的首例。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年1月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月2日
Arxiv
20+阅读 · 2020年6月8日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年1月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员