Browser fingerprinting is a stateless tracking technique that attempts to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade, for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is also the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.
翻译:浏览器指纹是一种无国籍追踪技术,试图将多种不同的网络API所披露的信息结合起来,为跟踪网络用户创建独特的识别特征。在过去的十年中,跟踪器滥用了几个现有和新提议的网络识别特征,以进一步加强浏览器指纹。现有方法仅限于在特定时间点检测特定的指纹技术。因此,他们无法系统地检测滥用不同网络API的新指纹技术。在本文中,我们建议采用FP-Radar,这是一种机器学习方法,利用过去十年来在100K顶网站对网络API使用情况的纵向测量,以早期发现新的和不断发展的浏览器指纹技术。结果显示,FP-Radar能够及早发现新引入的已知特性(例如WebGL、Sensor)和先前未知的(例如Gamepad、Clippbo)的指纹技术。对于浏览器指纹指纹而言,PFP-Radar也是我们最了解如何在过去十年中检测可视性API被滥用情况的首例。