This thesis tackles the subject of spatio-temporal forecasting with deep learning. The motivating application at Electricity de France (EDF) is short-term solar energy forecasting with fisheye images. We explore two main research directions for improving deep forecasting methods by injecting external physical knowledge. The first direction concerns the role of the training loss function. We show that differentiable shape and temporal criteria can be leveraged to improve the performances of existing models. We address both the deterministic context with the proposed DILATE loss function and the probabilistic context with the STRIPE model. Our second direction is to augment incomplete physical models with deep data-driven networks for accurate forecasting. For video prediction, we introduce the PhyDNet model that disentangles physical dynamics from residual information necessary for prediction, such as texture or details. We further propose a learning framework (APHYNITY) that ensures a principled and unique linear decomposition between physical and data-driven components under mild assumptions, leading to better forecasting performances and parameter identification.
翻译:该论文用深层学习处理时空预报问题。法国电力局(EDF)的激励应用是用鱼眼图像进行短期太阳能预报。我们探索了通过注入外部物理知识改进深度预报方法的两个主要研究方向。第一个方向涉及培训损失功能的作用。我们表明,可以利用不同的形状和时间标准来改进现有模型的性能。我们用拟议的DILATE损失函数和STRIPE模型的概率环境来处理确定性环境。我们的第二个方向是增加不完全的物理模型,用深数据驱动的网络进行准确预报。关于视频预测,我们引入了PhyDNet模型,该模型将物理动态与预测所需的剩余信息(如纹理或细节)分解开。我们进一步提议了一个学习框架(APHYNITY),以确保在轻度假设下对物理和数据驱动的部件进行有原则和独特的线性分解,从而更好地预测性能和参数识别。