Several branches of the potential outcome causal inference literature have discussed the merits of blocking versus complete randomization. Some have concluded it can never hurt the precision of estimates, and some have concluded it can hurt. In this paper, we reconcile these apparently conflicting views, give a more thorough discussion of what guarantees no harm, and discuss how other aspects of a blocked design can cost, all in terms of precision. We discuss how the different findings are due to different sampling models and assumptions of how the blocks were formed. We also connect these ideas to common misconceptions, for instance showing that analyzing a blocked experiment as if it were completely randomized, a seemingly conservative method, can actually backfire in some cases. Overall, we find that blocking can have a price, but that this price is usually small and the potential for gain can be large. It is hard to go too far wrong with blocking.


翻译:潜在结果因果推断文献中的若干分支讨论了封隔和完全随机化的优点。 有些人认为它永远不会损害估计的精确性,有些人认为它可能伤害。 在本文中,我们调和这些显然相互矛盾的观点,更全面地讨论如何保证无害,并讨论封隔设计其他方面的成本,从准确性角度来说都是如此。我们讨论了不同的结果是如何由不同的抽样模型和对块块的形成方式的假设造成的。我们还将这些想法与共同的误解联系起来。例如,我们表明,分析封隔试验,好像它是完全随机化的一样,是一种看似保守的方法,在某些情况下实际上可以反弹。总的来说,我们发现封隔绝可以有一个价格,但这种价格通常很小,而且收益的可能性可能很大。封隔绝很难大错。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月19日
Thinking Like Transformers
Arxiv
0+阅读 · 2021年7月19日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员