Research on intelligent tutoring systems has been exploring data-driven methods to deliver effective adaptive assistance. While much work has been done to provide adaptive assistance when students seek help, they may not seek help optimally. This had led to the growing interest in proactive adaptive assistance, where the tutor provides unsolicited assistance upon predictions of struggle or unproductivity. Determining when and whether to provide personalized support is a well-known challenge called the assistance dilemma. Addressing this dilemma is particularly challenging in open-ended domains, where there can be several ways to solve problems. Researchers have explored methods to determine when to proactively help students, but few of these methods have taken prior hint usage into account. In this paper, we present a novel data-driven approach to incorporate students' hint usage in predicting their need for help. We explore its impact in an intelligent tutor that deals with the open-ended and well-structured domain of logic proofs. We present a controlled study to investigate the impact of an adaptive hint policy based on predictions of HelpNeed that incorporate students' hint usage. We show empirical evidence to support that such a policy can save students a significant amount of time in training, and lead to improved posttest results, when compared to a control without proactive interventions. We also show that incorporating students' hint usage significantly improves the adaptive hint policy's efficacy in predicting students' HelpNeed, thereby reducing training unproductivity, reducing possible help avoidance, and increasing possible help appropriateness (a higher chance of receiving help when it was likely to be needed). We conclude with suggestions on the domains that can benefit from this approach as well as the requirements for adoption.


翻译:智能辅导系统的研究一直在探索以数据驱动的方法来提供有效的适应性援助。 虽然在学生寻求帮助时已经做了很多工作来提供适应性援助, 但他们可能不会寻求最佳的帮助。 这导致人们对主动适应性援助的兴趣日益浓厚, 教师在预测斗争或无生产力时主动提供援助。 确定何时和是否提供个性化支持是一个众所周知的挑战, 称为援助困境。 解决这一难题在开放的领域特别具有挑战性, 在那里可以有几种办法解决问题。 研究人员探索了确定何时主动帮助学生的方法, 但很少采用这些方法。 在本文中,我们提出了一个新的数据驱动方法, 将学生的提示用于预测其需要的帮助包括在内。 我们在一个智能教师中探讨其影响, 处理开放和结构完善的逻辑证明领域。 我们提出一个有控制的研究, 调查适应性提示政策的影响, 其依据对帮助学生的提示方法的预测, 我们展示了经验证据, 帮助学生在接受培训时可以节省大量时间, 在接受培训时, 将提示值纳入积极性效果的提示, 从而显示效果的预测结果。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员