Epilepsy is one of the most occurring neurological disease globally emerged back in 4000 BC. It is affecting around 50 million people of all ages these days. The trait of this disease is recurrent seizures. In the past few decades, the treatments available for seizure control have improved a lot with the advancements in the field of medical science and technology. Electroencephalogram (EEG) is a widely used technique for monitoring the brain activity and widely popular for seizure region detection. It is performed before surgery and also to predict seizure at the time operation which is useful in neuro stimulation device. But in most of cases visual examination is done by neurologist in order to detect and classify patterns of the disease but this requires a lot of pre-domain knowledge and experience. This all in turns put a pressure on neurosurgeons and leads to time wastage and also reduce their accuracy and efficiency. There is a need of some automated systems in arena of information technology like use of neural networks in deep learning which can assist neurologists. In the present paper, a model is proposed to give an accuracy of 98.33% which can be used for development of automated systems. The developed system will significantly help neurologists in their performance.


翻译:癫痫是公元前4000年全球出现的最常见神经疾病之一。它影响着目前所有年龄的大约5 000万人。该疾病的特征是经常发病。在过去几十年中,随着医学科技领域的进步,用于控制缉获的治疗方法有了很大的改进。脑脑图是一种广泛应用的技术,用于监测大脑活动,并广泛流行用于缉获区域检测。它是在手术前进行,还用来预测在操作时的缉获,这对神经刺激装置有用。但在大多数情况下,视觉检查是由神经学家进行,以便检测和分类疾病的模式,但需要大量的预科知识和经验。这反过来又给神经外科医生带来压力,导致时间浪费,还降低了时间的准确性和效率。在信息技术领域需要一些自动化系统,例如利用神经网络进行深层学习,从而帮助神经学家。在本文件中,提出一种模型,可以提供98.33%的精确度,用于发展自动化系统。发达的系统将大大地帮助神经系统的运作。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2022年1月8日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月5日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员