Leaving posterior sensitivity concerns aside, non-identifiability of the parameters does not raise a difficulty for Bayesian inference as far as the posterior is proper, but multi-modality or flat regions of the posterior induced by the lack of identification leaves a challenge for modern Bayesian computation. Sampling methods often struggle with slow or non-convergence when dealing with multiple modes or flat regions of the target distributions. This paper develops a novel Markov chain Monte Carlo (MCMC) approach for non-identified models, leveraging the knowledge of observationally equivalent sets of parameters, and highlights an important role that identification plays in modern Bayesian analysis.We show that our identification-aware proposal eliminates mode entrapment, achieving a convergence rate uniformly bounded away from zero, in sharp contrast to the exponentially decaying rates characterizing standard Random Walk Metropolis and Hamiltonian Monte Carlo. Simulation studies show its superior performance compared to other popular computational methods including Hamiltonian Monte Carlo and sequential Monte Carlo. We also demonstrate that our method uncovers non-trivial modes in the target distribution in a structural vector moving-average (SVMA) application.
翻译:暂不考虑后验敏感性,只要后验分布是适定的,参数的非可识别性并不会给贝叶斯推断带来困难,但由缺乏识别性导致的后验分布多峰性或平坦区域给现代贝叶斯计算带来了挑战。当处理目标分布的多峰或平坦区域时,采样方法常面临收敛缓慢甚至不收敛的问题。本文针对非识别模型,利用观测等价参数集的知识,提出了一种新颖的马尔可夫链蒙特卡洛(MCMC)方法,并强调了识别性在现代贝叶斯分析中的重要作用。我们证明,本文提出的识别感知建议分布能够消除模式陷阱,其收敛率始终有界且远离零值,这与标准随机游走Metropolis算法和哈密顿蒙特卡洛算法中收敛率呈指数衰减的特征形成鲜明对比。仿真研究表明,相较于哈密顿蒙特卡洛、序贯蒙特卡洛等其他主流计算方法,本方法具有更优越的性能。我们还在结构向量移动平均(SVMA)应用中证明,本方法能够揭示目标分布中的非平凡模式。