Heterogeneous data are now ubiquitous in many applications in which correctly identifying the subgroups from a heterogeneous population is critical. Although there is an increasing body of literature on subgroup detection, existing methods mainly focus on the univariate response setting. In this paper, we propose a joint heterogeneity and reduced-rank learning framework to simultaneously identify the subgroup structure and estimate the covariate effects for heterogeneous multivariate response regression. In particular, our approach uses rank-constrained pairwise fusion penalization and conducts the subgroup analysis without requiring prior knowledge regarding the individual subgroup memberships. We implement the proposed approach by an alternating direction method of multipliers (ADMM) algorithm and show its convergence. We also establish the asymptotic properties for the resulting estimators under mild and interpretable conditions. A predictive information criterion is proposed to select the rank of the coefficient matrix with theoretical support. The effectiveness of the proposed approach is demonstrated through simulation studies and a real data application.


翻译:异质数据在众多应用场景中已普遍存在,其中准确识别异质总体中的子群结构至关重要。尽管关于子群检测的文献日益增多,现有方法主要集中于单变量响应设定。本文提出一种联合异质性与降秩学习框架,旨在同时识别子群结构并估计异质多元响应回归中的协变量效应。具体而言,该方法采用秩约束的成对融合惩罚技术,在无需预先获知个体子群归属信息的前提下进行子群分析。我们通过交替方向乘子法(ADMM)算法实现所提方法,并证明其收敛性。同时,在温和且可解释的条件下建立了所得估计量的渐近性质。为选择系数矩阵的秩,本文提出具有理论支撑的预测信息准则。通过模拟研究与实际数据应用,验证了所提方法的有效性。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
专知会员服务
12+阅读 · 2021年6月20日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员