Despite the rich literature on scheduling algorithms for wireless networks, algorithms that can provide deadline guarantees on packet delivery for general traffic and interference models are very limited. In this paper, we study the problem of scheduling real-time traffic under a conflict-graph interference model with unreliable links due to channel fading. Packets that are not successfully delivered within their deadlines are of no value. We consider traffic (packet arrival and deadline) and fading (link reliability) processes that evolve as an unknown finite-state Markov chain. The performance metric is efficiency ratio which is the fraction of packets of each link which are delivered within their deadlines compared to that under the optimal (unknown) policy. We first show a conversion result that shows classical non-real-time scheduling algorithms can be ported to the real-time setting and yield a constant efficiency ratio, in particular, Max-Weight Scheduling (MWS) yields an efficiency ratio of 1/2. We then propose randomized algorithms that achieve efficiency ratios strictly higher than 1/2, by carefully randomizing over the maximal schedules. We further propose low-complexity and myopic distributed randomized algorithms, and characterize their efficiency ratio. Simulation results are presented that verify that randomized algorithms outperform classical algorithms such as MWS and GMS.


翻译:尽管在无线网络的时间安排算法方面有丰富的文献,但能够为一般交通和干扰模式的集包交付提供最后期限保证的算法却非常有限。在本文件中,我们研究的是将实时交通安排在因频道消退而导致不可靠链接的冲突电报干扰模式下的问题。没有在最后期限内成功交付的包裹没有价值。我们认为,交通(包裹抵达和最后期限)和淡化(链接可靠性)过程演变为未知的有限状态Markov链条。性能衡量标准是效率比率,即与最佳(未知的)政策相比,每个链接在最后期限内交付的包件的一小部分。我们首先显示一种转换结果,显示传统的非实时调度算法可以移植到实时设置,并产生一个持续的效率比率,特别是,Max-Weight Scheduling(MWS)效率比率为1/2。我们然后提出随机化算法,通过对最高时间表进行仔细随机调整,使效率达到严格高于1/2的效率比率。我们进一步提出低的兼容性和我所分配的随机性随机性算法,并将这种算算出它们作为MWAS的随机性矩阵。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
大数据白皮书(2020年), 72页pdf
专知会员服务
59+阅读 · 2020年12月31日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
46+阅读 · 2020年9月28日
深度神经网络实时物联网图像处理,241页pdf
专知会员服务
77+阅读 · 2020年3月15日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年8月22日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员