We introduce T-pro 2.0, an open-weight Russian LLM for hybrid reasoning and efficient inference. The model supports direct answering and reasoning-trace generation, using a Cyrillic-dense tokenizer and an adapted EAGLE speculative-decoding pipeline to reduce latency. To enable reproducible and extensible research, we release the model weights, the T-Wix 500k instruction corpus, the T-Math reasoning benchmark, and the EAGLE weights on Hugging Face. These resources allow users to study Russian-language reasoning and to extend or adapt both the model and the inference pipeline. A public web demo exposes reasoning and non-reasoning modes and illustrates the speedups achieved by our inference stack across domains. T-pro 2.0 thus serves as an accessible open system for building and evaluating efficient, practical Russian LLM applications.


翻译:我们推出了T-pro 2.0,一个用于混合推理与高效推理的开源权重俄语大语言模型。该模型支持直接回答与推理轨迹生成,采用西里尔字母密集型分词器及适配的EAGLE推测解码流水线以降低延迟。为支持可复现与可扩展的研究,我们在Hugging Face上发布了模型权重、T-Wix 50万条指令语料库、T-Math推理基准测试集及EAGLE权重。这些资源使用户能够研究俄语推理任务,并可扩展或适配模型与推理流水线。公开的网页演示展示了推理与非推理模式,并说明了我们的推理堆栈在多领域实现的加速效果。因此,T-pro 2.0作为一个易用的开放系统,可用于构建与评估高效、实用的俄语大语言模型应用。

0
下载
关闭预览

相关内容

【CVPR2024】SHiNe:用于开放词汇目标检测的语义层次枢纽
专知会员服务
14+阅读 · 2024年5月18日
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员