Vertical federated learning (VFL) aims to train models from cross-silo data with different feature spaces stored on different platforms. Existing VFL methods usually assume all data on each platform can be used for model training. However, due to the intrinsic privacy risks of federated learning, the total amount of involved data may be constrained. In addition, existing VFL studies usually assume only one platform has task labels and can benefit from the collaboration, making it difficult to attract other platforms to join in the collaborative learning. In this paper, we study the platform collaboration problem in VFL under privacy constraint. We propose to incent different platforms through a reciprocal collaboration, where all platforms can exploit multi-platform information in the VFL framework to benefit their own tasks. With limited privacy budgets, each platform needs to wisely allocate its data quotas for collaboration with other platforms. Thereby, they naturally form a multi-party game. There are two core problems in this game, i.e., how to appraise other platforms' data value to compute game rewards and how to optimize policies to solve the game. To evaluate the contributions of other platforms' data, each platform offers a small amount of "deposit" data to participate in the VFL. We propose a performance estimation method to predict the expected model performance when involving different amount combinations of inter-platform data. To solve the game, we propose a platform negotiation method that simulates the bargaining among platforms and locally optimizes their policies via gradient descent. Extensive experiments on two real-world datasets show that our approach can effectively facilitate the collaborative exploitation of multi-platform data in VFL under privacy restrictions.


翻译:垂直联盟学习( VFL) 旨在从不同平台存储的不同功能空间的跨SIlo数据中培训模型。 现有的 VFL 方法通常假定每个平台上的所有数据都可以用于模型培训。 但是,由于联合学习的内在隐私风险,所涉数据的总量可能会受到限制。 此外, 现有的 VFL 研究通常假设只有一个平台有任务标签, 并且能够从合作中受益, 从而难以吸引其他平台加入协作学习。 在本文中, 我们研究VFL 在隐私限制下, VFL 的平台协作问题。 我们提议通过互惠合作, 所有平台都可以利用每个平台上的所有数据来用于模型上的所有数据。 由于隐私预算有限, 每个平台都需要明智地分配与其他平台合作的数据配额。 因此, 他们自然会形成多党游戏。 在这个游戏中有两个核心问题, 即如何评估其他平台的数据价值, 以计算游戏的递增率, 以及如何在游戏中优化政策。 为了评估其他平台的数据的贡献, 并且所有平台都可以在 VFL 框架中利用多平台的多平台中利用多平台限制信息信息来受益。 每个平台提供少量的预估值数据。 当我们提出“ 预估数据时, 我们用不同的工具来演示时, 我们用不同的工具来显示一种预算数据。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月18日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员