When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) verifiable stability, and iii) computational efficiency. Unconstrained minimization of prediction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to enforce stability often preserve accuracy, but do so only at the cost of increased computation. In this work, we investigate if a seemingly-naive procedure can simultaneously offer all three desiderata. Specifically, we consider a post-hoc procedure in which we surgically manipulate the spectrum of the linear system after it was learned using unconstrained least squares. We call this approach spectral clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after any eigenvalues whose magnitude exceeds one have been clipped to one (without altering the eigenvectors). We also show that SC can be readily combined with Koopman operators to learn nonlinear dynamical systems that can generate stable predictions of nonlinear phenomena, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Through comprehensive experiments involving two different applications and publicly available benchmark datasets, we show that this simple technique can efficiently learn highly-accurate predictive dynamics that are provably-stable. Notably, we find that SC can match or outperform strong baselines while being orders-of-magnitude faster. Finally, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our code and datasets can be found at https://github.com/GT-STAR-Lab/spec_clip.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员