This entry contains the core material of my habilitation thesis, soon to be officially submitted. It provides a self-contained presentation of the original results in this thesis, in addition to their detailed proofs. The motivation of these results is the analysis of data which lie in Riemannian manifolds. Their aim is to bring about general, meaningful, and applicable tools, which can be used to model, and to learn from such "Riemannian data", as well as to analyse the various algorithms which may be required in this kind of pursuit (for sampling, optimisation, stochastic approximation, ...). The world of Riemannian data and algorithms can be quite different from its Euclidean counterpart, and this difference is the source of mathematical problems, addressed in my thesis. The first chapter provides some taylor-made geometric constructions, to be used in the thesis, while subsequent chapters (there are four more of them), address a series of issues, which arise from unresolved challenges, in the recent literature. A one-page guide, on how to read the thesis, is to be found right after the table of contents.


翻译:本条目包含我即将正式提交的适应能力论文的核心材料。 除了详细证据外,本论文还自成一体地展示了本论文的原始结果。这些结果的动机是分析位于里格曼方形的数据。它们的目的是提供一般的、有意义的和适用的工具,可以用来建模,并从这样的“里曼尼亚数据”中学习,以及分析在这种追求中可能需要的各种算法(抽样、优化、随机近似、......)。里曼尼亚的数据和算法的世界与欧克莱德的对等世界可能大不相同,而这种差异是数学问题的根源,在我的论文中谈到。第一章提供了一些可被用于建模的工具,而随后各章(还有四章)则涉及在最近的文献中尚未解决的挑战所产生的一系列问题。关于如何阅读该论文的一页指南将在目录之后找到。

0
下载
关闭预览

相关内容

【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
专知会员服务
123+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Scalable computation for Bayesian hierarchical models
Arxiv
0+阅读 · 2021年3月17日
Arxiv
0+阅读 · 2021年3月17日
VIP会员
相关VIP内容
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
专知会员服务
123+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员