The human driver is no longer the only one concerned with the complexity of the driving scenarios. Autonomous vehicles (AV) are similarly becoming involved in the process. Nowadays, the development of AV in urban places underpins essential safety concerns for vulnerable road users (VRUs) such as pedestrians. Therefore, to make the roads safer, it is critical to classify and predict their future behavior. In this paper, we present a framework based on multiple variations of the Transformer models to reason attentively about the dynamic evolution of the pedestrians' past trajectory and predict its future actions of crossing or not crossing the street. We proved that using only bounding boxes as input to our model can outperform the previous state-of-the-art models and reach a prediction accuracy of 91 % and an F1-score of 0.83 on the PIE dataset up to two seconds ahead in the future. In addition, we introduced a large-size simulated dataset (CP2A) using CARLA for action prediction. Our model has similarly reached high accuracy (91 %) and F1-score (0.91) on this dataset. Interestingly, we showed that pre-training our Transformer model on the simulated dataset and then fine-tuning it on the real dataset can be very effective for the action prediction task.
翻译:人类驾驶者不再是唯一关注驾驶方案复杂性的驱动者。 自治车辆(AV)同样也正在参与这一进程。 如今,在城市发展AV是行人等脆弱道路使用者(VRUs)的基本安全问题的基础。 因此,为了使道路更加安全,至关重要的是要对道路进行分类和预测其未来行为。 在本文件中,我们提出了一个基于变异器模型多种变异的框架,以关注行人过去行车轨迹的动态演变,并预测行人今后跨越或不跨越街道的行动。 我们证明,只有装箱作为模型的投入,才能超越我们以前最先进的模型,并达到91%的预测准确度和0.83的PIE数据预测值。 此外,我们引入了一个大型模拟数据集(CP2A),使用CARLA进行行动预测。 我们的模型同样达到了高精确度(91 % ) 和F1芯( 0.91 ) 。 有趣的是, 我们展示了模型的模拟模型, 模拟了我们之前的模型, 模拟了我们的数据, 模拟了我们之前的模型, 模拟了我们的数据。