We study the detection and the reconstruction of a large very dense subgraph in a social graph with $n$ nodes and $m$ edges given as a stream of edges, when the graph follows a power law degree distribution, in the regime when $m=O(n. \log n)$. A subgraph $S$ is very dense if it has $\Omega(|S|^2)$ edges. We uniformly sample the edges with a Reservoir of size $k=O(\sqrt{n}.\log n)$. Our detection algorithm checks whether the Reservoir has a giant component. We show that if the graph contains a very dense subgraph of size $\Omega(\sqrt{n})$, then the detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost surely correct. We define a new model of random graphs which follow a power law degree distribution and have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct a good approximation of the very dense subgraph with high probability. We generalize these results to dynamic graphs defined by sliding windows in a stream of edges.
翻译:我们用美元节点和美元边缘进行社会图中大型非常密集的子图的探测和重建。 当该图表遵循权力法度分布时, 当当美元=O(n.\log n) 时, 当该图表遵循权力法度分布时, 当当当美元=O(n.\log n) 时, 当该图遵循权力法度分布时, 当一个子图显示美元非常密集。 当它有美元=Omega( ⁇ S ⁇ 2/2) 边缘时, 一个子图显示美元是非常密集的。 我们一致用美元( sqrt{n.\log n) 在社会图中用美元比例( $) 来抽样调查边缘。 我们的检测算法算法算出一个新的随机图模型, 遵循权力法度分布, 并且拥有庞大的密度子图。 我们然后显示, 如果该图包含一个非常稠密的子图, 那么检测算法值几乎没有非常稠密的直流。 我们然后用这种直观的直观的直径将这些直观结果重新定位。