Diffusion-Limited Aggregation (DLA) is a cluster-growth model that consists in a set of particles that are sequentially aggregated over a two-dimensional grid. In this paper, we introduce a biased version of the DLA model, in which particles are limited to move in a subset of possible directions. We denote by $k$-DLA the model where the particles move only in $k$ possible directions. We study the biased DLA model from the perspective of Computational Complexity, defining two decision problems The first problem is Prediction, whose input is a site of the grid $c$ and a sequence $S$ of walks, representing the trajectories of a set of particles. The question is whether a particle stops at site $c$ when sequence $S$ is realized. The second problem is Realization, where the input is a set of positions of the grid, $P$. The question is whether there exists a sequence $S$ that realizes $P$, i.e. all particles of $S$ exactly occupy the positions in $P$. Our aim is to classify the Prediciton and Realization problems for the different versions of DLA. We first show that Prediction is P-Complete for 2-DLA (thus for 3-DLA). Later, we show that Prediction can be solved much more efficiently for 1-DLA. In fact, we show that in that case the problem is NL-Complete. With respect to Realization, we show that restricted to 2-DLA the problem is in P, while in the 1-DLA case, the problem is in L.


翻译:DLA 是一个集成模型, 它由一组粒子组成, 在二维网格上依次汇总。 在本文中, 我们引入了一种偏差版本的 DLA 模型, 粒子限制在一组可能的路径中移动。 我们用 $k$- DLA 来表示粒子移动的模型, 粒子只是以美元为可能的方向移动。 我们从计算复杂度的角度来研究有偏差的 DLA 模型, 定义了两个决定问题 。 第一个问题是预测, 其输入是一个网格 $c$ 和行走顺序 $S, 代表一组粒子的轨迹。 问题在于, 当序列 $S( $c) 实现时, 粒子是否在站点上停留 $c。 第二个问题是Real, 输入的输入是一组网格位置, $P$P$。 问题是是否存在一个序列 $S, 也就是说, 美元的所有的粒子 都在 $PD 中占据第一个位置 。 。 我们的目标是在 1 L 中显示 版本, 在 True- preal- L 的问题是 问题, 我们显示 Preal- 问题在 3L 问题是 。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
【2020新书】使用R和Python的高级BI分析,425页pdf
专知会员服务
33+阅读 · 2020年10月14日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
已删除
将门创投
7+阅读 · 2018年11月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
【2020新书】使用R和Python的高级BI分析,425页pdf
专知会员服务
33+阅读 · 2020年10月14日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
已删除
将门创投
7+阅读 · 2018年11月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员