Machine Learning as a Service (MLaaS) has gained popularity due to advancements in machine learning. However, untrusted third-party platforms have raised concerns about AI security, particularly in backdoor attacks. Recent research has shown that speech backdoors can utilize transformations as triggers, similar to image backdoors. However, human ears easily detect these transformations, leading to suspicion. In this paper, we introduce PaddingBack, an inaudible backdoor attack that utilizes malicious operations to make poisoned samples indistinguishable from clean ones. Instead of using external perturbations as triggers, we exploit the widely used speech signal operation, padding, to break speaker recognition systems. Our experimental results demonstrate the effectiveness of the proposed approach, achieving a significantly high attack success rate while maintaining a high rate of benign accuracy. Furthermore, PaddingBack demonstrates the ability to resist defense methods while maintaining its stealthiness against human perception. The results of the stealthiness experiment have been made available at https://nbufabio25.github.io/paddingback/.
翻译:暂无翻译