The year 2019 witnessed the rollout of the 5G standard, which promises to offer significant data rate improvement over 4G. While 5G is still in its infancy, there has been an increased shift in the research community for communication technologies beyond 5G. The recent emergence of machine learning approaches for enhancing wireless communications and empowering them with much-desired intelligence holds immense potential for redefining wireless communication for 6G. The evolving communication systems will be bottlenecked in terms of latency, throughput, and reliability by the underlying signal processing at the physical layer. In this position paper, we motivate the need to redesign iterative signal processing algorithms by leveraging deep unfolding techniques to fulfill the physical layer requirements for 6G networks. To this end, we begin by presenting the service requirements and the key challenges posed by the envisioned 6G communication architecture. We outline the deficiencies of the traditional algorithmic principles and data-hungry deep learning (DL) approaches in the context of 6G networks. Specifically, deep unfolded signal processing is presented by sketching the interplay between domain knowledge and DL. The deep unfolded approaches reviewed in this article are positioned explicitly in the context of the requirements imposed by the next generation of cellular networks. Finally, this article motivates open research challenges to truly realize hardware-efficient edge intelligence for future 6G networks.


翻译:2019年推出了5G标准,该标准有望在4G的基础上大大改善数据率。 5G标准虽然仍处于初创阶段,但在通信技术研究界中,超越5G的通信技术出现了更大的转变。 最近出现了加强无线通信和赋予无线通信权能的机器学习方法,这为6G重新定义无线通信提供了巨大潜力。 不断演变的通信系统将因物理层的基本信号处理而在延缓度、吞吐量和可靠性方面受到阻碍。在本立场文件中,我们提出需要重新设计迭代信号处理算法,利用深层开发的技术满足6G网络的物理层要求。为此,我们首先介绍6G所设想的通信结构所提出的服务要求和所构成的主要挑战。我们概述了6G网络中传统算法原则和数据饥饿深度学习方法的缺陷。具体地说,通过勾画域知识与DL之间的相互作用来进行深入的信号处理。本文章中审查的深度演练方法明确放在了为未来一代硬件网络实现真正高效化的硬件网络所施加的高度要求的背景下。

0
下载
关闭预览

相关内容

信号处理期刊采用了理论与实践的各个方面的信号处理。它以原始研究工作,教程和评论文章以及实际发展情况为特色。它旨在将知识和经验快速传播给从事信号处理研究,开发或实际应用的工程师和科学家。该期刊涵盖的主题领域包括:信号理论;随机过程; 检测和估计;光谱分析;过滤;信号处理系统;软件开发;图像处理; 模式识别; 光信号处理;数字信号处理; 多维信号处理;通信信号处理;生物医学信号处理;地球物理和天体信号处理;地球资源信号处理;声音和振动信号处理;数据处理; 遥感; 信号处理技术;雷达信号处理;声纳信号处理;工业应用;新的应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/sigpro/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
24+阅读 · 2021年1月25日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员