The disjoint paths problem is a fundamental problem in algorithmic graph theory and combinatorial optimization. For a given graph $G$ and a set of $k$ pairs of terminals in $G$, it asks for the existence of $k$ vertex-disjoint paths connecting each pair of terminals. The proof of Robertson and Seymour [JCTB 1995] of the existence of an $n^3$ algorithm for any fixed $k$ is one of the highlights of their Graph Minors project. In this paper, we focus on the version of the problem where all the paths are required to be shortest paths. This problem, called the disjoint shortest paths problem, was introduced by Eilam-Tzoreff [DAM 1998] where she proved that the case $k = 2$ admits a polynomial time algorithm. This problem has received some attention lately, especially since the proof of the existence of a polynomial time algorithm in the directed case when $k = 2$ by B\'erczi and Kobayashi [ESA 2017]. However, the existence of a polynomial algorithm when $k = 3$ in the undirected version remained open since 1998. In this paper we show that for any fixed $k$, the disjoint shortest paths problem admits a polynomial time algorithm. In fact for any fixed $C$, the algorithm can be extended to treat the case where each path connecting the pair $(s,t)$ has length at most $d(s,t) + C$.
翻译:脱节路径问题是算法图形理论和组合优化中的一个基本问题。 对于一个给定的图形 $G$ 和一套以$G$为单位的一对端终端, 它要求存在连接每对端终端的 $k$ verdex- diswoint 路径。 Robertson 和 Seymour (1995 JCTB 1995 ) 的证明 任何固定的 $3$ 的算法是其图形未成年人项目的亮点之一 。 在本文中, 我们侧重于所有路径都需要最短路径的问题版本 。 这个问题叫做脱节最短路径问题, 由 Eilam- Tzoreff [DAM 1998] 提出, 她证明了案件 $ = 2 承认了一个复合时间算法 。 这个问题最近得到了一些关注, 尤其是当 $k = 2 由 B\ erczi 和 Kobayashii [ESA 2017] 的组合时间 。 然而, 最短的混合路径的存在, 在1998 美元 中, 将 美元 = 美元 美元 美元 的组合算算法 将 的 的 的 以任何固定的 美元 美元 表示为固定的 。